Skip to content
Scan a barcode
Scan
Paperback Linear Algebra: A Pure Mathematical Approach Book

ISBN: 376436792X

ISBN13: 9783764367923

Linear Algebra: A Pure Mathematical Approach

In algebra, an entity is called linear if it can be expressed in terms of addition, and multiplication by a scalar; a linear expression is a sum of scalar multiples of the entities under consideration. Also, an operation is called linear if it preserves addition, and multiplication by a scalar. For example, if A and Bare 2 x 2 real matrices, v is a (row) vector in the real plane, and c is a real number, then v(A + B) = vA + vB and (cv)A = c(vA), that is, the process of applying a matrix to a vector is linear. Linear Algebra is the study of properties and systems which preserve these two operations, and the following pages present the basic theory and results of this important branch of pure mathematics. There are many books on linear algebra in the bookshops and libraries of the world, so why write another? A number of excellent texts were written about fifty years ago (see the bibliography); in the intervening period the 'style' of math- ematical presentation has changed. Also, some of the more modern texts have concentrated on applications both inside and outside mathematics. There is noth- ing wrong with this approach; these books serve a very useful purpose. But linear algebra contains some fine pure mathematics and so a modern text taking the pure mathematician's viewpoint was thought to be worthwhile.

Recommended

Format: Paperback

Condition: New

$32.25
Save $12.74!
List Price $44.99
50 Available
Ships within 2-3 days

Related Subjects

Math Mathematics Science & Math

Customer Reviews

0 rating
Copyright © 2025 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks ® and the ThriftBooks ® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured
Timestamp: 9/22/2025 7:56:45 AM
Server Address: 10.21.32.133